An economy of details: standards and data reusability

Author:

Delgado Ana1ORCID

Affiliation:

1. TIK Centre for Technology, Innovation and Culture, University of Oslo , Oslo, Norway

Abstract

Abstract Reusability has been a key issue since the origins of the parts-based approach to synthetic biology. Starting with the BioBrick™ standard part, multiple efforts have aimed to make biology more exchangeable. The reusability of parts and other deoxyribonucleic acid-based data has proven over time to be challenging, however. Drawing on a series of qualitative interviews and an international workshop, this article explores the challenges of reusability in real laboratory practice. It shows particular ways that standards are experienced as presenting shortcomings for capturing the kinds of contextual information crucial for scientists to be able to reuse biological parts and data. I argue that researchers in specific laboratories develop a sense of how much circumstantial detail they need to share for others to be able to make sense of their data and possibly reuse it. When choosing particular reporting formats, recharacterizing data to gain closer knowledge or requesting additional information, researchers enact an ‘economy of details’. The farther apart two laboratories are in disciplinary, epistemological, technical and geographical terms, the more detailed information needs to be captured for data to be reusable across contexts. In synthetic biology, disciplinary distance between computing science and engineering researchers and experimentalist biologists is reflected in diverging views on standards: what kind of information should be included to enable reusability, what kind of information can be captured by standards at all and how they may serve to produce and circulate knowledge. I argue that such interdisciplinary tensions lie at the core of difficulties in setting standards in synthetic biology.

Funder

European Commission

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3