Hybrid semiparametric systems for quantitative sequence-activity modeling of synthetic biological parts

Author:

Portela Rui M C1,von Stosch Moritz2,Oliveira Rui1

Affiliation:

1. REQUIMTE/LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, Caparica, Portugal

2. CEAM Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, UK

Abstract

Abstract Predicting the activity of modified biological parts is difficult due to the typically large size of nucleotide sequences, resulting in combinatorial designs that suffer from the “curse of dimensionality” problem. Mechanistic design methods are often limited by knowledge availability. Empirical methods typically require large data sets, which are difficult and/or costly to obtain. In this study, we explore for the first time the combination of both approaches within a formal hybrid semiparametric framework in an attempt to overcome the limitations of the current approaches. Protein translation as a function of the 5’ untranslated region sequence in Escherichia coli is taken as case study. Thermodynamic modeling, partial least squares (PLS) and hybrid parallel combinations thereof are compared for different data sets and data partitioning scenarios. The results suggest a significant and systematic reduction of both calibration and prediction errors by the hybrid approach in comparison to standalone thermodynamic or PLS modeling. Although with different magnitudes, improvements are observed irrespective of sample size and partitioning method. All in all the results suggest an increase of predictive power by the hybrid method potentially leading to a more efficient design of biological parts.

Funder

Portuguese Fundação para a Ciência e Tecnologia

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3