Different protein localizations on the inner and outer leaflet of cell-sized liposomes using cell-free protein synthesis

Author:

Uyeda Atsuko1,Watanabe Takayoshi2,Hohsaka Takahiro2,Matsuura Tomoaki1

Affiliation:

1. Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

2. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Abstract

Abstract Membranes of living cells possess asymmetry. The inner and outer leaflets of the membrane consist of different phospholipid compositions, which are known to affect the function of membrane proteins, and the loss of the asymmetry has been reported to lead to cell apoptosis. In addition, different proteins are found on the inner and outer leaflets of the membrane, and they are essential for various biochemical reactions, including those related to signal transduction and cell morphology. While in vitro lipid bilayer reconstitution with asymmetric phospholipid compositions has been reported, the reconstitution of lipid bilayer where different proteins are localized in the inner and outer leaflet, thereby enables asymmetric protein localizations, has remained difficult. Herein, we developed a simple method to achieve this asymmetry using an in vitro transcription–translation system (IVTT). The method used a benzylguanine (BG) derivative-modified phospholipid, which forms a covalent bond with a snap-tag sequence. We show that purified snap-tagged protein can be localized to the cell-sized liposome surface via an interaction between BG and the snap-tag. We then show that IVTT-synthesized proteins can be located at the lipid membrane and that different proteins can be asymmetrically localized on the outer and inner leaflets of liposomes.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3