Periplasmic stress contributes to a trade-off between protein secretion and cell growth in Escherichia coli Nissle 1917

Author:

Emani Sivaram SubayaORCID,Kan Anton1,Storms Timothy2,Bonanno Shanna3,Law Jade2,Ray Sanhita45,Joshi Neel S26

Affiliation:

1. Department of Materials, ETH Zürich , Zürich, Switzerland

2. Department of Chemistry and Chemical Biology, Northeastern University , Boston, MA, USA

3. Department of Bioengineering, Northeastern University , Boston, MA, USA

4. Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden

5. Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology , Stockholm, Sweden

6. Harvard Medical School , Boston, MA, USA

Abstract

Abstract Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a trade-off between cell growth and per-cell protein secretion in the curli biofilm secretion system of Escherichia coli Nissle 1917. Initial characterization using 24-h continuous growth and protein production monitoring confirms decreased growth rates at high induction, leading to a local maximum in total protein production at intermediate induction. Propidium iodide (PI) staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with periplasmic stress mediated by outer membrane secretion and periplasmic accumulation of protein containing the outer membrane transport tag. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth–secretion trade-off. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems Graphical Abstract

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3