basicsynbio and the BASIC SEVA collection: software and vectors for an established DNA assembly method

Author:

Haines Matthew C12ORCID,Carling Benedict3ORCID,Marshall James3ORCID,Shenshin Vasily A4ORCID,Baldwin Geoff S45ORCID,Freemont Paul126ORCID,Storch Marko12ORCID

Affiliation:

1. Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London , London SW7 2AZ, UK

2. London Biofoundry, Imperial College Translation and Innovation Hub , London W12 0BZ, UK

3. Department of Bioengineering, Imperial College London , London, Westminster SW7 2AZ, UK

4. Department of Life Sciences, Imperial College London , London, Westminster SW7 2AZ, UK

5. Imperial College Centre for Synthetic Biology, Imperial College London , London SW7 2AZ, UK

6. UK DRI Care Research and Technology Centre, Imperial College London , Hammersmith Campus, Du Cane Road, London W12 0NN, UK

Abstract

Abstract Standardized deoxyribonucleic acid (DNA) assembly methods utilizing modular components provide a powerful framework to explore designs and iterate through Design–Build–Test–Learn cycles. Biopart Assembly Standard for Idempotent Cloning (BASIC) DNA assembly uses modular parts and linkers, is highly accurate, easy to automate, free for academic and commercial use and enables hierarchical assemblies through an idempotent format. These features enable applications including pathway engineering, ribosome binding site (RBS) tuning, fusion protein engineering and multiplexed guide ribonucleic acid (RNA) expression. In this work, we present basicsynbio, open-source software encompassing a Web App (https://basicsynbio.web.app/) and Python Package (https://github.com/LondonBiofoundry/basicsynbio), enabling BASIC construct design via simple drag-and-drop operations or programmatically. With basicsynbio, users can access commonly used BASIC parts and linkers while designing new parts and assemblies with exception handling for common errors. Users can export sequence data and create instructions for manual or acoustic liquid-handling platforms. Instruction generation relies on the BasicBuild Open Standard, which is parsed for bespoke workflows and is serializable in JavaScript Object Notation for transfer and storage. We demonstrate basicsynbio, assembling 30 vectors using sequences including modules from the Standard European Vector Architecture (SEVA). The BASIC SEVA vector collection is compatible with BASIC and Golden Gate using BsaI. Vectors contain one of six antibiotic resistance markers and five origins of replication from different compatibility groups. The collection is available via Addgene under an OpenMTA agreement. Furthermore, vector sequences are available from within the basicsynbio application programming interface with other collections of parts and linkers, providing a powerful environment for designing assemblies for bioengineering applications. Graphical Abstract

Funder

UK Research and Innovation

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3