Machine learning noise exposure detection of rail transit driver using heart rate variability

Author:

Sun Zhiqiang12,Liu Haiyue1,Jiao Yubo1,Zhang Chenyang1,Xu Fang3,Jiang Chaozhe1,Yu Xiaozhuo4,Wu Gang1

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University , Chengdu 611756 , China

2. Lanzhou Rail Transit Co., LTD. , Lanzhou 730000 , China

3. Sichuan Tourism University , Chengdu 611756 , China

4. PagerDuty, Inc.905 King St W , Toronto, ON M6K 3G9 , Canada

Abstract

Abstract Previous studies have found that drivers’ physiological conditions can deteriorate under noise conditions, which poses a potential hazard when driving. As a result, it is crucial to identify the status of drivers when exposed to different noises. However, such explorations are rarely discussed with short-term physiological indicators, especially for rail transit drivers. In this study, an experiment involving 42 railway transit drivers was conducted with a driving simulator to assess the impact of noise on drivers’ physiological responses. Considering the individuals’ heterogeneity, this study introduced drivers’ noise annoyance to measure their self-noise-adaption. The variances of drivers’ heart rate variability (HRV) along with different noise adaptions are explored when exposed to different noise conditions. Several machine learning approaches (Support Vector Machines, K-nearest Neighbors, and Random Forests) were then used to classify their physiological status under different noise conditions according to the HRV and drivers’ self-noise adaptions. Results indicate that the volume of traffic noise negatively affects drivers’ performance in their routines. Drivers with different noise adaptions but exposed to a fixed noise were found with discrepant HRV, demonstrating that noise adaption is highly associated with drivers’ physiological status under noises. It is also found that noise adaption inclusion could raise the accuracy of classifications. Overall, the Random Forests classifier performed the best in identifying the physiological status when exposed to noise conditions for drivers with different noise adaptions.

Publisher

Oxford University Press (OUP)

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3