Quantitative measurement and application of droplets on physical surfaces based on LIF technology

Author:

Wu Fan12,Zhou Shuaixiong12,Cui Qingmin3,Xu Renze124,Li Hengkui1,Yu Chao2

Affiliation:

1. Key Laboratory of Traffic Safety on Track (Central South University), Ministry of Education , Changsha 410075, Hunan , China

2. Joint International Research Laboratory of Key Technologies for Rail Traffic Safety , Changsha 410075, Hunan , China

3. School of software, Henan University of Engineering , Zhengzhou 451191, Henan , China

4. National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle , Changsha 410075, Hunan , China

Abstract

Abstract Contaminated surfaces play a significant role in the transmission of respiratory infectious diseases. To address this issue, we presented a novel quantitative detection method for droplets on physical surfaces, based on Laser-Induced Fluorescence (LIF) technique. The proposed detection method was demonstrated in a realistic high-speed train compartment scenario by simulating the process of droplet release during passengers' breathing and coughing. The experimental results showed that this method could offer high precision (10−1 mg/m2) for detecting minute substance concentrations, and its ease of operation makes it suitable for complex engineering environments. The results also revealed that under the combined effects of the indoor airflow and breathing airflow, the range of droplets released by breathing activity exceeded two rows in front and behind the release position. Simultaneously, we observed that a large number of droplets settled on the seat surfaces on both sides of the same row as the releaser, with over 36% of these droplets concentrated on the backrest area of the seats. As the respiratory jet velocity increased, the location with the most sediment droplets (accounting for 8% of the total sedimentation) occurred on the seat directly in front of the releaser, and approximately 48% of the droplets were found on the back of this seat. Our proposed method overcomes the shortcomings of existing experimental methods in quantitatively capturing the motion characteristics of droplets in complex flow fields.

Publisher

Oxford University Press (OUP)

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3