MGMT: Immunohistochemical Detection in High-Grade Astrocytomas

Author:

Lipp Eric S12,Healy Patrick3,Austin Alan4,Clark Alysha1,Dalton Tara1,Perkinson Kathryn4,Herndon James E3,Friedman Henry S12,Friedman Allan H12,Bigner Darell D14,McLendon Roger E14

Affiliation:

1. The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA

2. Department of Neurosurgery, Duke University, Durham, North Carolina

3. Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, NC

4. Department of Pathology, Duke University Health System, Durham, NC

Abstract

Abstract Glioma therapeutic resistance to alkylating chemotherapy is mediated via O6-methylguanine-DNA methyltransferase (MGMT). We hypothesized that a CD45/HAM56/MGMT double-stained cocktail would improve MGMT discrimination in tumor cells versus inflammatory and endothelial cells (IEC). Total MGMT protein was quantified by IHC on 982 glioblastomas (GBM) and 199 anaplastic astrocytomas. Correcting for IEC was done by a CD45/HAM56/MGMT 2-color cocktail. Lowest IEC infiltrates (IEC “cold spots”) were identified to quantitate MGMT as well as the percentage of IEC% in the IEC cold spots. MGMT promoter methylation (PM) was also determined. Among the GBM biopsies, mean uncorrected and corrected MGMT% were 19.87 (range 0–90) and 16.67; mean IEC% was 18.65 (range 1–80). Four hundred and fifty one (45.9%) GBM biopsies were positive MGMT PM. Both uncorrected and corrected MGMT% positivity correlated with PM. All 3 MGMT scores correlated with overall survival (OS) in GBM’s. Cold spot IEC% was also positively associated with OS. These effects remained in a multivariate model after adjusting for age and disease status. Prognosis determined by correcting MGMT% score for IEC% is not improved in this analysis. However, IEC COLD SPOT score does provide additional prognostic information that can be gained from this correction method.

Funder

Pediatric Brain Tumor Foundation

Kyrie Foundation

NIH

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology,General Medicine,Pathology and Forensic Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3