Deltas

Author:

Anthony Edward J.

Abstract

River deltas are subaqueous and subaerial coastal accumulations of river-derived sediments adjacent to, or close to, the source river. The word “delta,” however, is used in a more general sense to describe any feature resulting from this type of marginal accumulation, including in lakes, lagoons, ponds, mining tails, and reservoirs. Most river deltas are formed on the margins of marine basins. River deltas vary considerably in size, and some are the largest coastal landforms in the world. In addition to fluvial sediments, delta deposits sometimes include marine or along-shore derived sediments transported by waves and currents. Deltas form where the hydrodynamic conditions in the receiving basin are not energetic enough to disperse all or the bulk of the sediment brought in by rivers. Sediment transported through deltas contributes to deposition on adjacent coasts, continental shelves, and marine basins. Much of the early research on modern deltas focused on their oil- and gas-bearing potential and how they are analogs for ancient deltas in the rock record. There has been a shift, however, toward increasingly more diverse and cross-disciplinary research on deltas. Deltas are complex landforms. Recent research has shown that deltas also act as filters, sinks, and reactors for continental materials, including carbon, in transit to the ocean. Deltas are home to nearly six hundred million people. They commonly have highly productive soils, rich and biodiverse ecosystems, and offer a wide range of ecosystem services such as coastal defense, drinking water supply, recreation, green tourism, and nature conservation. Many deltas support intense agriculture and fisheries and are food baskets for many nations. Industry and transport in some deltas are also very important, leading to the development of major urban centers, ports, and harbors. Deltas are characterized by low topography and thus particularly vulnerable to catastrophic river floods, tsunami, cyclones, subsidence, and global sea-level rise. This vulnerability is increasing as a result of reduced sediment flux from rivers and various other modifications caused by human interventions. Although deltas may develop resilience and adapt to changes in sediment supply and sea level, commonly by reorganizing their channels and their patterns of sedimentation, human impacts coupled with the effects of climate change are rendering many deltas economic and environmental hotspots. A better understanding of delta dynamics and vulnerability, and a lot of political goodwill, are needed to implement adaptive delta management, and delta restoration and rehabilitation strategies.

Publisher

Oxford University Press

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular automata to understand the prograding limit of deltaic tidal flat;Engineering Applications of Computational Fluid Mechanics;2023-07-13

2. River mouth morphodynamics and deflection over the short term: effects on spit growth and mangrove dynamics;Frontiers in Environmental Science;2023-05-18

3. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review;Earth-Science Reviews;2019-06

4. Wave-Tide-Dominated Coasts;Encyclopedia of Earth Sciences Series;2019

5. Wave-Tide-Dominated Coasts;Encyclopedia of Earth Sciences Series;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3