Universal Anesthesia Machine: Clinical Application in an Austere, Resource-Limited Environment

Author:

Vande Lune Stefani A1,Lantry James H23,Mason Phillip E4,Skupski Richard15,Toth Arthur5,Zimmer Donald5,Mulligan John67,McCurdy Michael T3,Larson Emilee E1,Preuss Fletcher8,Tran Quincy K910

Affiliation:

1. Indiana University School of Medicine-South Bend, 1044 E. Angela Blvd, South Bend, IN 46617

2. Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814

3. Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, 110 S. Paca Street, 2nd Floor, Baltimore, MD 21201

4. San Antonio Military Medical Center, 21 Spurs Lane, San Antonio, TX 78240

5. Memorial Hospital, 615 N. Michigan Street, South Bend, IN 46601

6. Chandler Regional Medical Center, 1955 W. Frye Road, Chandler, AZ 85224

7. Mercy Gilbert Medical Center, 3555 S. Val Vista Drive, Gilbert, AZ 85297

8. University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA 22908

9. Department of Emergency Medicine, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21021

10. The R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201

Abstract

Abstract Introduction In austere environments, the safe administration of anesthesia becomes challenging because of unreliable electrical sources, limited amounts of compressed gas, and insufficient machine maintenance capabilities. Such austere environments exist in battlefield medicine, in low- and middle-income countries (LMICs), and in areas struck by natural disasters. Whether in military operations or civilian settings, the Universal Anesthesia Machine (UAM) (Gradian Health Systems, New York, New York) is a draw-over device capable of providing safe and effective general anesthesia when external oxygen supplies or reliable electrical sources are limited. This brief report discusses a proof-of-concept observational study demonstrating the clinical utility of the UAM in a resource-limited area. Materials and Methods This observational study of 20 patients in Haiti who underwent general anesthesia using the UAM highlights the device’s capability to deliver anesthesia intraoperatively in a resource-limited LMIC clinical setting. Preoxygenation was achieved with the UAM’s draw-over oxygen supply. Patients received acetaminophen for analgesia, dexmedetomidine for preinduction anesthesia, and succinylcholine for paralysis. After induction, the UAM provided a mixture of oxygen and isoflurane for maintenance of anesthesia. Manual ventilation was performed using draw-over bellows until spontaneous ventilation recurred, when clinically appropriate, artificial airways were removed. Intraoperative medication was administered at the anesthesiologist’s discretion. The institutional review board at the U.S. anesthesiologists’ affiliated institution and the Haitian hospital approved this study; patients were consented in their native language. Results Two anesthesiologists used the UAM to deliver general anesthesia to 20 patients in a Haitian hospital without access to an external oxygen supply, reliable power grid, or opioids. The patients’ average age was ~40 years, and 90% of them were male. Most of the cases were herniorrhaphy (50%) and hydrocelectomy (25%) surgeries. The median American Society of Anesthesiologists (ASA) score was 2; 45% of the patients had an ASA score of 1, and none had an ASA score >3. Of the 20 cases, 55% of patients received an endotracheal tube, and 40% received a laryngeal mask airway; for one patient, only a masked airway was used. Every patient was discharged on the day of the surgery. No complications occurred in the perioperative or 1-month follow-up period. Conclusion The UAM can be used where a lack of resources and training exist because of its simple design, built-in oxygen concentrator, and capacity to revert from continuous-flow to draw-over anesthesia in the event of a power failure or if external oxygen supplies are unavailable. We believe the UAM addresses some of the shortcomings of modern anesthesia machines and has the potential to improve the delivery of safe general anesthesia in combat and austere scenarios. Further studies could consider different types of surgeries than those reported here and involve more complex patients. Studies involving alternative anesthetic agents and non-anesthesiologist personnel are also needed. Overall, this brief report detailing the use of the UAM following a natural disaster in a LMIC is proof of concept that the machine can provide reliable anesthesia for surgical procedures in austere and resource-limited environments, including disaster areas and modern combat zones.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3