The Effects of Body Composition, Physical Fitness on Time of Useful Consciousness in Hypobaric Hypoxia

Author:

Kim Keunsoo1,Choi Jean1,Lee On2,Lim Jungjun3,Kim Jungwoon1ORCID

Affiliation:

1. Department of Physical Education, Korea Air Force Academy , Cheongju-si, Chungcheongbuk-do 28187, Korea

2. Korea Institute of Sports Science , Nowon-gu, Seoul 01794, Korea

3. Department of Physical Education, College of Education, Seoul National University , Gwanak-gu, Seoul 08826, Korea

Abstract

ABSTRACT Introduction Several previous studies have reported that hypoxia accidents of fighter pilots are rarer than gravity-induced loss of consciousness and spatial disorientation; however, the risk is greater. Therefore, this study aimed to investigate the relationship between physical fitness and body composition on time of useful consciousness (TUC) in hypobaric hypoxia. Materials and Methods Body composition and physical fitness testing on human participants were performed; subsequently, they were exposed to hypobaric hypoxia at a simulated altitude of 25,000 ft. Cognitive testing of the participants was accomplished by having them perform arithmetic task tables until they stopped writing for a period exceeding 5 seconds, at which point, they were placed on 100% oxygen. TUC was measured from the time the participants removed their oxygen masks to the time when the oxygen masks were placed back on them. Pearson’s correlation was used to determine the relationship between TUC and other variables, and multiple regression was performed to determine the independent variables that best explain the TUC. Results TUC was positively correlated with the maximum oxygen uptake, stroke volume, arteriovenous oxygen difference, and endurance (sit-up and push-up). The maximum heart rate on the ground, high altitude, body fat mass, and percent body fat were negatively correlated with TUC. A regression analysis showed that 84.5% of the TUC can be explained by body composition and physical fitness. Conclusions Our results revealed that increased cardiorespiratory fitness and decreased body fat mass could significantly impact the TUC. Therefore, for Air Force pilots who are frequently at high altitudes and at risk for exposure to hypoxia, aerobic exercise is significant to hypoxia tolerance.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3