Implant Design and Cervical Spinal Biomechanics and Neurorehabilitation: A Finite Element Investigation

Author:

Bahreinizad Hossein,Chowdhury Suman K1ORCID

Affiliation:

1. Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University , Lubbock, TX 79409-3061, USA

Abstract

ABSTRACT Introduction The cervical spine, pivotal for mobility and overall body function, can be affected by cervical spondylosis, a major contributor to neural disorders. Prevalent in both general and military populations, especially among pilots, cervical spondylosis induces pain and limits spinal capabilities. Anterior Cervical Discectomy and Fusion (ACDF) surgery, proposed by Cloward in the 1950s, is a promising solution for restoring natural cervical curvature. The study objective was to investigate the impacts of ACDF implant design on postsurgical cervical biomechanics and neurorehabilitation outcomes by utilizing a biofield head-neck finite element (FE) platform that can facilitate scenario-specific perturbations of neck muscle activations. This study addresses the critical need to enhance computational models, specifically FE modeling, for ACDF implant design. Materials and Methods We utilized a validated head-neck FE model to investigate spine–implant biomechanical interactions. An S-shaped dynamic cage incorporating titanium (Ti) and polyetheretherketone (PEEK) materials was modeled at the C4/C5 level. The loading conditions were carefully designed to mimic helmet-to-helmet impact in American football, providing a realistic and challenging scenario. The analysis included intervertebral joint motion, disk pressure, and implant von Mises stress. Results The PEEK implant demonstrated an increased motion in flexion and lateral bending at the contiguous spinal (C4/C5) level. In flexion, the Ti implant showed a modest 5% difference under 0% activation conditions, while PEEK exhibited a more substantial 14% difference. In bending, PEEK showed a 24% difference under 0% activation conditions, contrasting with Ti’s 17%. The inclusion of the head resulted in an average increase of 18% in neck angle and 14% in C4/C5 angle. Disk pressure was influenced by implant material, muscle activation level, and the presence of the head. Polyetheretherketone exhibited lower stress values at all intervertebral disc levels, with a significant effect at the C6/C7 levels. Muscle activation level significantly influenced disk stress at all levels, with higher activation yielding higher stress. Titanium implant consistently showed higher disk stress values than PEEK, with an orders-of-magnitude difference in von Mises stress. Excluding the head significantly affected disk and implant stress, emphasizing its importance in accurate implant performance simulation. Conclusions This study emphasized the use of a biofidelic head-neck model to assess ACDF implant designs. Our results indicated that including neck muscles and head structures improves biomechanical outcome measures. Furthermore, unlike Ti implants, our findings showed that PEEK implants maintain neck motion at the affected level and reduce disk stresses. Practitioners can use this information to enhance postsurgery outcomes and reduce the likelihood of secondary surgeries. Therefore, this study makes an important contribution to computational biomechanics and implant design domains by advancing computational modeling and theoretical knowledge on ACDF–spine interaction dynamics.

Funder

Directorate for Engineering

Science and Technology Directorate

Edward E. Whitacre Jr. College of Engineering, Texas Tech University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3