Near-Infrared Spectroscopy Monitoring to Detect Changes in Cerebral and Renal Perfusion During Hypovolemic Shock, Volume Resuscitation, and Vasoconstriction

Author:

Borg Ulf1,Katilius Julia Z1,Addison Paul S2

Affiliation:

1. Department of Medical Science, Patient Monitoring, Medtronic , Boulder, CO 80301, USA

2. Department of Research and Development, Patient Monitoring, Medtronic, Technopole Centre , Edinburgh EH26 0PJ, UK

Abstract

ABSTRACT Introduction Rapidly changing hemodynamic conditions, such as uncontrolled hemorrhage and the resulting hypovolemic shock, are a common contributor to active duty military deaths. These conditions can cause cerebral desaturation, and outcomes may improve when regional cerebral oxygen saturation (CrSO2) is monitored using near-infrared spectroscopy (NIRS) and desaturation episodes are recognized and reversed. The purpose of this porcine study was to investigate the ability of NIRS monitoring to detect changes in regional cerebral and regional renal perfusion during hypovolemia, resuscitation by volume infusion, and vasoconstriction. Materials and Methods Hemorrhagic shock was induced by removing blood through a central venous catheter until mean arterial pressure (MAP) was <40 mmHg. Each blood removal step was followed by a 10-minute stabilization period, during which cardiac output, blood pressure, central venous pressure, blood oxygen saturation, and CrSO2 and regional renal oxygen saturation (RrSO2) were measured. Shock was reversed using blood infusion and vasoconstriction separately until MAP returned to normal. Statistical comparisons between groups were performed using the paired t-test or the Wilcoxon signed-rank test. Results Using volume resuscitation, both CrSO2 and RrSO2 returned to normal levels after hypovolemia. Blood pressure management with phenylephrine returned CrSO2 levels to normal, but RrSO2 levels remained significantly lower compared to the pre-hemorrhage values (P < .0001). Comparison of the percent CrSO2 as a function of MAP showed that CrSO2 levels approach baseline when a normal MAP is reached during volume resuscitation. In contrast, a significantly higher MAP was required to return to baseline CrSO2 during blood pressure management with phenylephrine (P < .0001). Evaluation of carotid blood flow and CrSO2 indicated that during induction of hypovolemia, the two measures are strongly correlated. In contrast, there was limited correlation between carotid blood flow and CrSO2 during blood infusion. Conclusions This study demonstrated that it is possible to restore CrSO2 by manipulating MAP with vasoconstriction, even in profound hypotension. However, MAP manipulation may result in unintended consequences for other organs, such as the kidney, if the tissue is not reoxygenated sufficiently. The clinical implications of these results and how best to respond to hypovolemia in the pre-hospital and hospital settings should be elucidated by additional studies.

Funder

Medtronic

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3