On the Development of Interspecies Traumatic Brain Injury Correspondence Rules

Author:

Saunders Robert1,Tan X Gary1,Bagchi Amit1

Affiliation:

1. Multifunctional Materials Branch, Materials Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, DC

Abstract

Abstract Traumatic brain injury analysis in human is exceedingly difficult due to the methods in which data can be collected, thus many researchers commonly implement animal surrogates. However, use of these surrogates is costly and restricted by ethical concerns and test logistics. Computational models and simulations do not have these constraints and can produce significant amounts of data in relatively short periods. This paper shows the development of a human head and neck model and a full body porcine model. Both models are developed from high-resolution CT and MRI scans and the latest low-to-high strain rate mechanical data available in the literature to represent tissue component material behaviors. Both models are validated against experiments from the literature and used to complete an initial interspecies correspondence rule development study for blast overpressure effects. The results indicate the similarities in the way injury develops in the pig brain and human brain but these similarities occur at very different insult levels. These results are extended by a study, which shows that blast peak pressure is the driving factor in injury prediction and, depending on the injury metric used, significantly different injuries could be predicted.

Funder

Office of Naval Research

Department of Defense

Air Force Research Laboratory

Major Shared Resource Center

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3