Local Respiratory Viral Surveillance Can Focus Public Health Interventions to Decrease Influenza Disease Burden

Author:

Crouch Elena1,Gonzalez Jonathan1,Jacobs Erin1,Schaecher Kurt2,Kehl Margaret1,Ottolini Martin1,Malloy Allison1

Affiliation:

1. Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA

2. Walter Reed National Military Medical Center, Bethesda, MD 20814, USA

Abstract

ABSTRACT Background Respiratory viruses are an important cause of nonbattle injury disease and contribute to the top seven reasons for medical encounters. In the absence of vaccines that provide complete protection against these viruses, viral surveillance can identify disease burden and target virus-specific preventative measures. Influenza infection, in particular, has significant adverse effects on force readiness. Methods We tracked the frequency of 16 respiratory viruses at Walter Reed National Military Medical Center tested for during routine patient care using multiplex polymerase chain reaction and rapid antigen testing. We collected data on the date and location of the testing, as well as the age of the individual tested from two consecutive respiratory viral seasons. Results During the first year of data compilation (2017-2018), 2556 tests were performed; 342 (13.4%) were positive for influenza A and 119 (4.7%) were positive for influenza B. After influenza, the most common families of viruses identified were rhino/enterovirus (490 [19.2%]). During the second year (2018-2019), 4,458 tests were run; 564 (12.7%) were positive for influenza A and 35 (0.79%) were positive for influenza B, while rhino/enterovirus was identified in 690 (15.4%). Influenza peaked early during the 2017-2018 season and later during the 2018-2019 season. Importantly, during the 2017-2018 season, the vaccine was less effective for the H3N2 strain circulating that year and viral surveillance quickly identified a hospital-specific outbreak and a larger disease burden. This was in contrast to the 2018-2019 vaccine which exhibited higher effectiveness for circulating strains. Conclusion Our data highlight the seasonality of respiratory viruses with a focus on influenza. By tracking respiratory viruses in Department of Defense communities, we may be able to predict when influenza may cause the greatest burden for distinct organizational regions and prescribe with greater precision preventative protocols by location, as well as rapidly determine vaccine efficacy. Our current data suggest that when vaccine strains are mismatched, rapid upfront targeting of antivirals may be warranted, but when the vaccine strains are better matched, late season peaks of disease may indicate waning immunity and should be monitored.

Funder

Uniformed Service University Office of Research

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Reference11 articles.

1. The ability of seasonal and pandemic influenza to disrupt military operations;Hodge;J Mil Veteran Health,2011

2. Influenza and respiratory disease surveillance: the US military’s global laboratory-based network;Sueker;Influenza Other Respir Viruses,2010

3. The development and manufacture of influenza vaccines.;Buckland;Hum Vaccin Immunother,2015

4. The annual production cycle for influenza vaccine;Gerdil;Vaccine,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3