Mechanical Assessment of Tissue Properties During Tourniquet Application

Author:

Hooke Alexander W1,Hallbeck M Susan2,Prytz Erik3,Jonson Carl-Oscar4,Lowndes Bethany R25

Affiliation:

1. Mayo Clinic, Materials and Structural Testing Core, 200 1st St SW, Rochester, MN 55905, USA

2. Mayo Clinic, Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, 200 1st St SW, Rochester, MN 55905, USA

3. Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden

4. Department of Biomedical and Clinical Sciences, Center for Disaster Medicine and Traumatology, Linköping University, Johannes Magnus väg 11, 583 30 Linköping, Sweden

5. Department of Neurological Sciences, University of Nebraska Medical Center, 988440 Nebraska Medical Center, Omaha, NE 68198, USA

Abstract

ABSTRACT Introduction Successful tourniquet application increases survival rate of exsanguinating extremity hemorrhage victims. Tactile feedback during tourniquet application training should reflect human tissue properties in order to increase success in the field. This study aims to understand the mechanical properties of a human limb during tourniquet application. Method Six cadaveric extremities—three uppers and three lowers—were tested from three body mass index groups: low (<19) healthy (19-24), and overweight (>24). Each specimen donned with a tourniquet and mounted to a servo-hydraulic testing machine, which enabled controlled tightening of the tourniquet while recording the tourniquet tension force and strap displacement. A thin-film pressure sensor placed between the specimen and the tourniquet recorded contact pressure. Each limb was tested with the tourniquet applied at two different sites resulting in testing at the upper arm, forearm, thigh, and shank. Results The load displacement curves during radial compression were found to be nonlinear overall, with identifiable linear regions. Average contact pressure under the tourniquet strap at 200N and 300N of tension force was 126.3 (σ = 41.2) mm Hg and 205.3 (σ = 75.3) mm Hg, respectively. There were no significant differences in tissue stiffness or contact pressure at 300N of tension force between limb (upper vs. lower) or body mass index. At 200N of tension, the upper limb had significantly higher contact pressure than the lower limb (P = 0.040). Relative radial compression was significantly different between upper (16.74, σ = 4.16%) and lower (10.15, σ = 2.25%) extremities at 200N tension (P = 0.005). Conclusions Simulation of tissue compression during tourniquet application may be achieved with a material exhibiting elastic properties to mimic the force-displacement behavior seen in cadaveric tissue or with different layers of material. Different trainers for underweight, healthy, and overweight limbs may not be needed. Separate tourniquet training fixtures should be created for the upper and lower extremities.

Funder

Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery

Mayo Clinic Material and Structural Testing Core

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3