Fast-Running Tools for Personalized Monitoring of Blast Exposure in Military Training and Operations

Author:

Przekwas Andrzej1,Garimella Harsha T1,Chen Z J1,Zehnbauer Tim1,Gupta Raj K2,Skotak Maciej3,Carr Walter S3,Kamimori Gary H3

Affiliation:

1. Bio Division, CFD Research Corp., Huntsville, AL 35806, USA

2. DoD Blast Injury Research Program Coordinating Office, U.S. Army Medical Research & Development Command, Fort Detrick, MD 21702, USA

3. Center for Military Psychiatry and Neuroscience Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA

Abstract

ABSTRACT Introduction During training and combat operations, military personnel may be exposed to repetitive low-level blast while using explosives to gain entry or by firing heavy weapon systems such as recoilless weapons and high-caliber sniper rifles. This repeated exposure, even within allowable limits, has been associated with cognitive deficits similar to that of accidental and sports concussion such as delayed verbal memory, visual-spatial memory, and executive function. This article presents a novel framework for accurate calculation of the human body blast exposure in military heavy weapon training scenarios using data from the free-field and warfighter wearable pressure sensors. Materials and Methods The CoBi human body model generator tools were used to reconstruct multiple training scenes with different weapon systems. The CoBi Blast tools were used to develop the weapon signature and estimate blast overpressure exposure. The authors have used data from the free-field and wearable pressure sensors to evaluate the framework. Results Carl-Gustav and 0.50 caliber sniper training scenarios were used to demonstrate and validate the developed framework. These simulations can calculate spatially and temporally resolved blast loads on the whole human body and on specific organs vulnerable to blast loads, such as head, face, and lungs. Conclusions This framework has numerous advantages including easier model setup and shorter simulation times. The framework is an important step towards developing an advanced field-applicable technology to monitor low-level blast exposure during heavy weapon military training and combat scenarios.

Funder

US Army Material Research and Development Command

Research Area Directorate (RAD) III

Office of the Assistant Secretary of Defense for Health Affairs

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3