Affiliation:
1. School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
2. DEVCOM Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005-5069, USA
Abstract
ABSTRACT
Introduction
The purpose of this study was to compare the rotational blunt impact performance of an anthropomorphic test device (ATD: male 50% Hybrid III head and neck) headform donning an Advanced Combat Helmet (ACH) between conditions in which the coefficient of static friction (μs) at the head-to-helmet pad interface varied.
Materials and Methods
Two ACHs (size large) were used in this study and friction was varied using polytetrafluoroethylene (PTFE), human hair, skullcap, and the native vinyl skin of the ATD. A condition in which hook and loop material adhered the headform to the liner system was also tested, resulting in a total of five conditions: PTFE, Human Hair, Skullcap, Vinyl, and Hook. Blunt impact tests with each helmet in each of the five conditions were conducted on a pneumatic linear impactor at 4.3 m/s. The ATD donning the ACH was impacted in seven locations (Crown, Front, Rear, Left Side, Right Side, Left Nape, and Right Nape). The peak resultant angular acceleration (PAA), velocity (PAV), and the Diffuse Axonal Multi-Axis, General Evaluation (DAMAGE) metric were compared between conditions.
Results
No pairwise differences were observed between conditions for PAA. A positive correlation was observed between mean μs and PAA at the Front (τ = 0.28; P = .044) and Rear (τ = 0.31; P = .024) impact locations. The Hook condition had a mean PAV value that was often less than the other conditions (P ≤ .024). A positive correlation was observed between mean μs and PAV at the Front (τ = 0.32; P = .019) and Right Side (τ = 0.57; P < .001) locations. The Hook condition tended to have the lowest DAMAGE value compared to the other conditions (P ≤ .032). A positive correlation was observed between the mean μs and DAMAGE at the Rear (τ = 0.60; P < .001) location. A negative correlation was observed at the Left Side (τ = -0.28; P = .040), Right Side (τ = -0.58; P < .001) and Left Nape (τ = -0.56; P < .001) locations.
Conclusions
The results of this study indicate that at some impact locations kinematic responses can vary as a function of the friction at the head-to-helmet pad interface. However, a reduction in the coupling of the head-helmet pad interface did not consistently reduce head angular kinematics or measures of brain strain across impact locations. Thus, for the ACH during collision-type impacts, impact location as opposed to μs seems to have a greater influence on head kinematics and rotational-based measures of brain strain.
Funder
U.S. Army Combat Capabilities Development Command
Publisher
Oxford University Press (OUP)
Subject
Public Health, Environmental and Occupational Health,General Medicine
Reference33 articles.
1. DoD numbers for traumatic brain injury, worldwide - totals; 2000–2021 Q1;Defense and Veterans Brain Injury Center (DVBIC)
2. Purchase description, helmet, advanced combat (ACH) AR/PD 10-02 Rev A;Department of the Army,2010
3. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration;Rowson;Ann Biomed Eng,2013
4. Predictors for traumatic brain injuries evaluated through accident reconstructions;Kleiven;Stapp Car Crash J,2007
5. Predicting concussion outcome by integrating finite element modeling and network analysis network-based concussion prediction;Anderson;Front Bioeng Biotechnol,2020
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献