3D Computational Modeling of Blast Wave Transmission in Human Ear From External Ear to Cochlear Hair Cells: A Preliminary Study

Author:

Bradshaw John1,Brown Marcus1,Jiang Shangyuan1ORCID,Gan Rong Z1ORCID

Affiliation:

1. School of Aerospace and Mechanical Engineering, University of Oklahoma , Norman, OK 73019, USA

Abstract

ABSTRACT Introduction Auditory disabilities like tinnitus and hearing loss caused by exposure to blast overpressures are prevalent among military service members and veterans. The high-pressure fluctuations of blast waves induce hearing loss by injuring the tympanic membrane, ossicular chain, or sensory hair cells in the cochlea. The basilar membrane (BM) and organ of Corti (OC) behavior inside the cochlea during blast remain understudied. A computational finite element (FE) model of the full human ear was used by Bradshaw et al. (2023) to predict the motion of middle and inner ear tissues during blast exposure using a 3-chambered cochlea with Reissner’s membrane and the BM. The inclusion of the OC in a blast transmission model would improve the model’s anatomy and provide valuable insight into the inner ear response to blast exposure. Materials and Methods This study developed a microscale FE model of the OC, including the OC sensory hair cells, membranes, and structural cells, connected to a macroscale model of the ear to form a comprehensive multiscale model of the human peripheral auditory system. There are 5 rows of hair cells in the model, each row containing 3 outer hair cells (OHCs) and the corresponding Deiters’ cells and stereociliary hair bundles. BM displacement 16.75 mm from the base induced by a 31 kPa blast overpressure waveform was derived from the macroscale human ear model reported by Bradshaw et al. (2023) and applied as input to the center of the BM in the OC. The simulation was run for 2 ms as a structural analysis in ANSYS Mechanical. Results The FE model results reported the displacement and principal strain of the OHCs, reticular lamina, and stereociliary hair bundles during blast transmission. The movement of the BM caused the rest of the OC to deform significantly. The reticular lamina displacement and strain amplitudes were highest where it connected to the OHCs, indicating that injury to this part of the OC may be likely due to blast exposure. Conclusions This microscale model is the first FE model of the OC to be connected to a macroscale model of the ear, forming a full multiscale ear model, and used to predict the OC’s behavior under blast. Future work with this model will incorporate cochlear endolymphatic fluid, increase the number of OHC rows to 19 in total, and use the results of the model to reliably predict the sensorineural hearing loss resulting from blast exposure.

Funder

U.S. Department of Defense

Publisher

Oxford University Press (OUP)

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3