Affiliation:
1. Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine , Natick, MA 01760, USA
2. Oak Ridge Institute of Science and Education , Belcamp, MD 21017, USA
Abstract
ABSTRACT
Introduction
Exertional heat illnesses remain a major threat to military service members in the United States and around the world. Exertional heat stroke (EHS) is the most severe heat illness, characterized by core hyperthermia and central nervous system dysfunction. Per current Army regulations, iced-sheet cooling (ISC) is the recommended immediate treatment for heat casualties in the field, but concerns have been raised regarding the efficacy of this approach. Thus, the purpose of this study was to quantify the cooling rate of ISC following exertional hyperthermia.
Materials and Methods
We utilized a randomized crossover design with 2 experimental trials. In both trials, exertional hyperthermia was induced by walking (3.5 mph at 5% grade) on a treadmill in an environmental chamber (40 °C, 30% RH) for up to 3 hours or until core body temperature reached 39.2 °C. After the walking portion, individuals either received ISC (experimental trial) or cooling and rested supine in the same environmental conditions for 30 minutes with no ISC (control trial). For ISC, bed sheets soaked in ice water were applied (per Army guidance) at the neck, chest, and groin with another sheet covering the body. Sheets were rotated and resoaked every 3 minutes until core temperature decreased to <38.0 °C.
Results
By design, participants finished exercise with increased core temperature (38.8 ± 0.39 °C vs. 38.90 ± 0.34 °C, ISC and control trials, P = 1.00). The ISC trial provided significantly (P = .023) greater cooling rates, 0.068 °C/min 95% confidence interval [CI; 0.053, 0.086], compared to the control trial, 0.047 °C/min 95% CI [0.038, 0.056]. Additionally, the time to decrease to less than 38.0 °C was significantly (P = .018) faster in the ISC trial (median = 9.3 minutes) compared to the control trial (median = 26.6 minutes).
Conclusion
ISC increases the cooling rate of those recovering from exertional hyperthermia. With the observed cooling rate, we can extrapolate that ISC would reduce core temperature by ∼2 °C within 30 minutes during a case of EHS. We conclude that ISC provides a safe and effective alternative for the field where cold water immersion resources may not be readily available.
Funder
US Army Army Medical Research and Development Command
Publisher
Oxford University Press (OUP)
Subject
Public Health, Environmental and Occupational Health,General Medicine
Reference21 articles.
1. Update: heat illness, active component, U.S. Armed Forces,2019
2. National athletic trainers’ association position statement: exertional heat illnesses;Casa;J Athl Train,2015
3. Fatal exertional heat stroke: a case series;Rav-Acha;Am J Med Sci,2004
4. Prevention of heat and cold casualties;TRADOC regulation 350-29,2016
5. Effectiveness of ice-sheet cooling following exertional hyperthermia;Butts;Mil Med,2017
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献