Platform Design for Optical Screening and Conditioning for Injury Resilience

Author:

Shiwani Bhawna12,Silder Amy3,Tulskie Alaina12,Al-Mfarej Dalya12,Green Brian34,Roy Serge H12,Luca Gianluca De12,Sessoms Pinata H3,Kline Joshua12ORCID

Affiliation:

1. Altec Inc , Natick, MA 01760, USA

2. Delsys Inc , Natick, MA 01760, USA

3. Naval Health Research Center , San Diego, CA 92106, USA

4. Leidos, Inc. , San Diego, CA 92121, USA

Abstract

ABSTRACT Introduction Musculoskeletal injuries (MSKIs) among active duty soldiers result in more than 10 million limited duty days each year and account for more than 70% of the medically nondeployable population. Overuse injuries in lower limbs from running, foot marching long distances with heavy loads, and lifting heavy objects are the most common types of injuries in the military. Physical training and rehabilitation exercises for greater resiliency through aerobic, muscle strength, endurance, and agility conditioning programs can prevent or reduce the effects of MSKIs if Soldiers adhere to proper biomechanics and training techniques. We are introducing a three-dimensional (3D) camera-based platform for Optical Screening and Conditioning for Injury Resilience (OSCIR) that is designed to identify and correct high-risk movement patterns based on quantifiable biomechanical measurements in clinical or field settings. Our goal is to improve resilience to MSKI by offering greater access to quality of movement skills in warfighters through an autonomous device that can be used in Sports Medicine and Reconditioning Team (SMART) clinics and High-Intensity Tactical Training (HITT) sites. Materials and Methods OSCIR fuses four pairs of Kinect Azure cameras into a concise footprint to achieve suitable sampling rates and an unobstructed field of view for accurate dynamic movement tracking using a custom point cloud solution. We designed a unique multistage 3D joint tracking algorithm architecture to methodically isolate the human body point cloud from the background, identify individual limb segments, and perform iterative joint optimization at the global and local joint levels. We evaluated the feasibility of our prototype system among N = 12 control participants (6 M/6 F; 21-37 years) in compliance with the Western Institutional Review Board (Tracking #20225920, approved on November 4, 2022). Five task-specific MSKI outcome metrics identified by end-user physical therapists and athletic trainers as indicators for movement quality were assessed across 7 lower-extremity exercises derived from standardized MSK assessment/conditioning batteries used in the military. Data were recorded concurrently by OSCIR and a reference standard Vicon motion capture system for validating system accuracy. Results Task-specific MSKI indicators for knee flexion and hip flexion range of motion achieved an average error of 4.05 ± 2.34°, while 3D position-based postural outcomes of left-right foot distance, left-right hand distance, and step length obtained mean absolute errors of 2.58 ± 2.30 cm. Results support the feasibility of our system in achieving outcomes that are comparable to currently accepted laboratory standards. Conclusions Our study describes the integration process for a 3D camera-based clinical system for MSKI conditioning and rehabilitation. The impact of our system will enable key stakeholders in the military to manage MSKIs in warfighters by automating key assessment and rehabilitation test batteries; making tests more readily accessible, and interpretations more accurate by providing objective biomechanical measures. OSCIR is undergoing turn-key design features to serve as a screening tool for warfighters to readily assess susceptibility to MSKI or as a training platform to help guide exercise techniques to achieve resiliency against future injuries.

Funder

U.S. Army Medical Research and Development Command

Medical Technology Enterprise Consortium

Publisher

Oxford University Press (OUP)

Reference26 articles.

1. Health of the Force;Ambrose,2022

2. Medical surveillance of injuries in the US Military descriptive epidemiology and recommendations for improvement;Jones;Am J Prev Med,2010

3. Physical training, fitness, and injuries: lessons learned from military studies;Jones;Jscr,2015

4. Technical Information Paper (TIP) 12-054-0616: Foot marching, load carriage, and injury risk;Army Public Health Command,2016

5. Systematic review of the association between physical fitness and musculoskeletal injury risk: part 3-flexibility, power, speed, balance, and agility;de la Motte;J Strength Cond Res,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3