Recent Progress in Animal Studies of the Skin- and Bone-integrated Pylon With Deep Porosity for Bone-Anchored Limb Prosthetics With and Without Neural Interface

Author:

Pitkin Mark1,Cassidy Charles2,Shevtsov Maxim A34,Jarrell Joshua R5,Park Hangue6,Farrell Brad J7,Dalton John F8,Childers W Lee910,Kistenberg Robert S5,Oh Kyunggeune5,Klishko Alexander N5,Prilutsky Boris I5

Affiliation:

1. Poly-Orth International, Sharon, MA, 02067, USA

2. Tufts University School of Medicine, Boston, MA, 02111, USA

3. Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Laboratory of Biomedical Nanotechnologies, Petersburg, 194064, Russia

4. Department of Biotechnology, First Pavlov State Medical University of St. Petersburg, Petersburg, 197022, Russia

5. School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA

6. Department of Electrical & Computer Engineering. Texas A&M University, College Station, TX, 77843, USA

7. Department of Physical Therapy, Georgia State University, Atlanta, GA, 30302, USA

8. Georgia Hand, Shoulder & Elbow, Atlanta, GA, 30309, USA

9. Center for the Intrepid, Department of Rehabilitation Medicine, Brooke Army Medical Center, Joint Base San Antonio, Ft. Sam Houston, TX, 78234, USA

10. Extremity Trauma and Amputation Center of Excellence, Joint Base San Antonio, Ft. Sam Houston, TX, 78234, USA

Abstract

ABSTRACT Introduction The three major unresolved problems in bone-anchored limb prosthetics are stable, infection-free integration of skin with a percutaneous bone implant, robust skeletal fixation between the implant and host bone, and a secure interface of sensory nerves and muscles with a prosthesis for the intuitive bidirectional prosthetic control. Here we review results of our completed work and report on recent progress. Materials and Methods Eight female adult cats received skin- and bone-integrated pylon (SBIP) and eight male adult cats received SBIP-peripheral neural interface (PNI) pylon into the right distal tibia. The latter pylons provided PNI for connection between a powered sensing transtibial prosthesis and electrodes in residual soleus muscle and on residual distal tibial nerve. If signs of infection were absent 28-70 days after implantation, cats started wearing a passive prosthesis. We recorded and analyzed full-body mechanics of level and slope locomotion in five cats with passive prostheses and in one cat with a powered sensing prosthesis. We also performed histological analyses of tissue integration with the implants in nine cats. Four pigs received SBIPs into the left hindlimb and two pigs—into the left forelimb. We recorded vertical ground reaction forces before amputation and following osseointegration. We also conducted pullout postmortem tests on the implanted pylons. One pig received in dorsum the modified SBIPs with and without silver coating. Results Six cats from the SBIP groups had implant for 70 days. One cat developed infection and did not receive prosthesis. Five cats had pylon for 148 to 183 days, showed substantial loading of the prosthesis during locomotion (40.4% below presurgery control), and demonstrated deep ingrowth of skin and bone tissue into SBIP (over 60%). Seven of eight cats from the SBIP-PNI group demonstrated poor pylon integration without clinical signs of infection. One cat had prosthesis for 824 days (27 months). The use of the bidirectionally controlled prosthesis by this animal during level walking demonstrated increased vertical loading to nearly normal values, although the propulsion force was significantly reduced. From the study on pigs, it was found that symmetry in loading between the intact and prosthetic limbs during locomotion was 80 ± 5.5%. Skin-implant interface was infection-free, but developed a stoma, probably because of the high mobility of the skin and soft tissues in the pig’s thigh. Dorsal implantation resulted in the infection-free deep ingrowth of skin into the SBIP implants. Conclusions Cats with SBIP (n = 5) and SBIP-PNI (n = 1) pylons developed a sound interface with the residuum skin and bone and demonstrated substantial loading of prosthetic limb during locomotion. One animal with SBIP developed infection and seven cats with SBIP-PNI demonstrated poor bone integration without signs of infection. Future studies of the SBIP-PNI should focus on reliability of integration with the residuum. Ongoing study with pigs requires decreasing the extra mobility of skin and soft tissues until the skin seal is developed within the SBIP implant.

Funder

U.S. Department of Defense

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3