The Manufacturing of 3D Printed models for the Neurotraumatological Education of Military Surgeons

Author:

Duda Sven1,Meyer Lisa1,Musienko Eugen2,Hartig Sascha2,Meyer Tobias2,Fette Marc2,Wessling Heinrich1

Affiliation:

1. Department of Neurosurgery, Hospital of the German Armed Forces, Lange Straße 38, 26655 Westerstede, Germany

2. Laboratory for Manufacturing Technology, Helmut Schmidt University/University of the German Armed Forces, Holstenhofweg 85, 22043 Hamburg, Germany

Abstract

Abstract Introduction When deployed abroad, military surgeons frequently have to deal with casualties involving head trauma. The emergency treatments, as well as craniotomies, are often performed by non-neurosurgeons qualified with basic neurotraumatological skills. Previous neurotrauma courses for education of non-neurosurgeons in Germany teach surgical emergency skills but do not include the training of skills needed to successfully utilize imaging in surgical planning, which is of importance for the safety and success of the treatment. To overcome these limitations, 3D printed models of neurotrauma cases were fabricated for application in the training of non-neurosurgeons. Materials and Methods Five models of actual neurotrauma cases from our neurosurgical department were segmented from CT scans and 3D printed using multi-part fused deposition modeling. Model quality was assessed with respect to the representation of pre-defined anatomical landmarks. The models were then fixed to a wooden mount with a central light source and covered by a latex mask for skin simulation. Surgical planning by means of craniometric measurements on the basis of available CT scans of the corresponding patients was then applied to the model. Results The 3D printed models precisely represented the cranium, the lesion, and anatomical landmarks, which are taken into consideration during surgical planning. Surface covering with washable latex masks ensured sufficient masking of the now non-noticeable lesion within the semi-translucent skull. Surgical planning was performed using washable marker drawings. When lighted, the otherwise non-visible lesion within the semi-translucent 3D printed craniums became visible and facilitated immediate success control for the course participants. Conclusion The presented method provided a way to fabricate precise 3D models of neurotrauma cases, which are suitable to teach the application of medical imaging in surgical planning. For further benefit analysis, the application of the presented education tool needs to be investigated within a neurotrauma course.

Funder

German Federal Ministry of Defence

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3