Development and Validation of a Clinical Risk Score to Predict Hospitalization Within 30 Days of Coronavirus Disease 2019 Diagnosis

Author:

Aboumrad Maya1ORCID,Zwain Gabrielle1,Smith Jeremy1,Neupane Nabin1,Powell Ethan1,Dempsey Brendan1,Reyes Carolina2,Satram Sacha2,Young-Xu Yinong13

Affiliation:

1. Clinical Epidemiology Program, White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA

2. Division of Health Economics and Outcomes Research, VIR Biotechnology Inc., San Francisco, CA 94158, USA

3. Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA

Abstract

ABSTRACT Introduction Early identification of patients with coronavirus disease 2019 (COVID-19) who are at risk for hospitalization may help to mitigate disease burden by allowing healthcare systems to conduct sufficient resource and logistical planning in the event of case surges. We sought to develop and validate a clinical risk score that uses readily accessible information at testing to predict individualized 30-day hospitalization risk following COVID-19 diagnosis. Methods We assembled a retrospective cohort of U.S. Veterans Health Administration patients (age ≥ 18 years) diagnosed with COVID-19 between March 1, 2020, and December 31, 2020. We screened patient characteristics using Least Absolute Shrinkage and Selection Operator logistic regression and constructed the risk score using characteristics identified as most predictive for hospitalization. Patients diagnosed before November 1, 2020, comprised the development cohort, while those diagnosed on or after November 1, 2020, comprised the validation cohort. We assessed risk score discrimination by calculating the area under the receiver operating characteristic (AUROC) curve and calibration using the Hosmer–Lemeshow (HL) goodness-of-fit test. This study was approved by the Veteran’s Institutional Review Board of Northern New England at the White River Junction Veterans Affairs Medical Center (Reference no.:1473972-1). Results The development and validation cohorts comprised 11,473 and 12,970 patients, of whom 4,465 (38.9%) and 3,669 (28.3%) were hospitalized, respectively. The independent predictors for hospitalization included in the risk score were increasing age, male sex, non-white race, Hispanic ethnicity, homelessness, nursing home/long-term care residence, unemployed or retired status, fever, fatigue, diarrhea, nausea, cough, diabetes, chronic kidney disease, hypertension, and chronic obstructive pulmonary disease. Model discrimination and calibration was good for the development (AUROC = 0.80; HL P-value = .05) and validation (AUROC = 0.80; HL P-value = .31) cohorts. Conclusions The prediction tool developed in this study demonstrated that it could identify patients with COVID-19 who are at risk for hospitalization. This could potentially inform clinicians and policymakers of patients who may benefit most from early treatment interventions and help healthcare systems anticipate capacity surges.

Funder

VIR Biotechnology Inc

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Reference40 articles.

1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges;Lai;Int J Antimicrob Agents,2020

2. Coronavirus disease 2019 (COVID-19): cases, data, & surveillance;Centers for Disease Control and Prevention

3. COVIDView: a weekly surveillance summary of US COVID-19 activity;Centers for Disease Control and Prevention

4. COVID-19 response plan;Veterans Health Administration Office of Emergency Management,2020

5. Disease and healthcare burden of COVID-19 in the United States;Miller;Nat Med,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3