3D Bioprinting and Its Application to Military Medicine

Author:

Betz Jordan F12,Ho Vincent B2,Gaston Joel D12

Affiliation:

1. Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402

2. Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814

Abstract

Abstract Introduction Traditionally, tissue engineering techniques have largely focused on 2D cell culture models—monolayers of immortalized or primary cells growing on tissue culture plastic. Although these techniques have proven useful in research, they often lack physiological validity, because of the absence of fundamental tissue properties, such as multicellular organization, specialized extracellular matrix structures, and molecular or force gradients essential to proper physiological function. More recent advances in 3D cell culture methods have facilitated the development of more complex physiological models and tissue constructs; however, these often rely on self-organization of cells (bottom-up design), and the range of tissue construct size and complexity generated by these methods remains relatively limited. By borrowing from advances in the additive manufacturing field, 3D bioprinting techniques are enabling top-down design and fabrication of cellular constructs with controlled sizing, spacing, and chemical functionality. The high degree of control over engineered tissue architecture, previously unavailable to researchers, enables the generation of more complex, physiologically relevant 3D tissue constructs. Three main 3D bioprinting techniques are reviewed—extrusion, droplet-based, and laser-assisted bioprinting techniques are among the more robust 3D bioprinting techniques, each with its own strengths and weaknesses. High complexity tissue constructs created through 3D bioprinting are opening up new avenues in tissue engineering, regenerative medicine, and physiological model systems for researchers in the military medicine community. Materials and Methods Recent primary literature and reviews were selected to provide a broad overview of the field of 3D bioprinting and illustrate techniques and examples of 3D bioprinting relevant to military medicine. References were selected to illustrate specific examples of advances and potential military medicine applications in the 3D bioprinting field, rather than to serve as a comprehensive review. Results Three classes of 3D bioprinting techniques were reviewed: extrusion, droplet-based, and laser-assisted bioprinting. Advantages, disadvantages, important considerations, and constraints of each technique were discussed. Examples from the primary literature were given to illustrate the techniques. Relevant applications of 3D bioprinting to military medicine, namely tissue engineering/regenerative medicine and new models of physiological systems, are discussed in the context of advancing military medicine. Conclusions 3D bioprinting is a rapidly evolving field that provides researchers the ability to build tissue constructs that are more complex and physiologically relevant than traditional 2D culture methods. Advances in bioprinting techniques, bioink formulation, and cell culture methods are being translated into new paradigms in tissue engineering and physiological system modeling, advancing the state of the art, and increasing construct availability to the military medicine research community.

Funder

Uniformed Services University of the Health Sciences

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3