Comparison of Acellular Solutions for Ex-situ Perfusion of Amputated Limbs

Author:

Haug Valentin12,Kollar Branislav13,Endo Yori1,Kadakia Nikita14,Veeramani Anamika1,Kauke Martin1,Tchiloemba Bianief1,Klasek Robin1,Pomahac Bohdan1

Affiliation:

1. Division of Plastic Surgery, Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA

2. Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, Ludwigshafen am Rhein 67071, Germany

3. Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Center, Freiburg 79106, Germany

4. Riverside School of Medicine, University of California, 92521 UCR Botanic Gardens Road, Riverside, CA 92507, USA

Abstract

Abstract Introduction Hypothermic ex-situ machine perfusion (MP) has been shown to be a promising alternative to static cold storage (SCS) for preservation of solid organs for transplantation and vascularized composite allotransplantation. Perfusion with blood-based perfusion solutions in austere environments is problematic due to their need for appropriate storage and short shelf life, making it impractical for military and emergency use. Acellular perfusion has been shown to be effective, but the ideal perfusate solution for MP of amputated limbs is yet to be determined. The purpose of this study is to evaluate the efficacy of alternative perfusate solutions, such as dextran-enriched Phoxilium, Steen, and Phoxilium in ex-vivo hypothermic MP of amputated limbs in a porcine model. Materials and methods Amputated forelimbs from Yorkshire pigs (n = 8) were preserved either in SCS (n = 2) at 4°C for 12 hours or machine-perfused at 10°C for 12 hours with oxygenated perfusion solutions (n = 6) at a constant flow rate. The perfusates used include modified Steen-solution, Phoxilium (PHOX), or Phoxilium enriched with dextran-40 (PHODEX). The perfusate was exchanged after 1 and 6 hours of perfusion. Machine data were recorded continuously. Perfusate samples for clinical chemistry, blood gas analysis, and muscle biopsies were procured at specific timepoints and subsequently analyzed. In this semi in-vivo study, limb replantation has not been performed. Results After amputation, every limb was successfully transferred and connected to our perfusion device. The mean total ischemia time was 77.5 ± 5.24 minutes. The temperature of the perfusion solution was maintained at 10.18 ± 2.01°C, and perfusion pressure at 24.48 ± 10.72 mmHg. Limb weight increased by 3% in the SCS group, 36% in the PHODEX group, 25% in the Steen group, and 58% in the PHOX group after 12 hours. This increase was significant in the PHOX group compared with the SCS group. All perfusion groups showed a pressure increase of 10.99 mmHg over time due to edema. The levels of HIF-1a decreased over time in all groups except the Steen and the PHODEX group. The biomarkers of muscle injury in the perfusate samples, such as creatine kinase and lactate-dehydrogenase, showed a significant difference between groups, with highest values in the PHODEX group. No significant differences were found in the results of the blood gas analysis. Conclusion With the exception of significantly higher levels of creatine kinase and lactate dehydrogenase, MP with dextran-enriched Phoxilium provides similar results as that of the commercially available perfusates such as Steen, without the need for cold storage, and at circa 5% of the cost of the Steen solution. Further large-scale replantation studies are necessary to evaluate the efficacy of dextran-enriched Phoxilium as an alternate perfusate solution.

Funder

Pomahac’s Sundry fund

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3