Adaptive Human-Robotic Interaction for  Robotic-assisted Surgical Settings

Author:

Yang Jing1,Layadi Iris Charlene2,Wachs Juan P1,Yu Denny1ORCID

Affiliation:

1. School of Industrial Engineering, Purdue University , West Lafayette, IN 47906, USA

2. School of Biomedical Engineering, Purdue University , West Lafayette, IN 47906, USA

Abstract

ABSTRACT Introduction Increased complexity in robotic-assisted surgical system interfaces introduces problems with human–robot collaboration that result in excessive mental workload (MWL), adversely impacting a surgeon’s task performance and increasing error probability. Real-time monitoring of the operator’s MWL will aid in identifying when and how interventions can be best provided to moderate MWL. In this study, an MWL-based adaptive automation system is constructed and evaluated for its effectiveness during robotic-assisted surgery. Materials and Methods This study recruited 10 participants first to perform surgical tasks under different cognitive workload levels. Physiological signals were obtained and employed to build a real-time system for cognitive workload monitoring. To evaluate the effectiveness of the proposed system, 15 participants were recruited to perform the surgical task with and without the proposed system. The participants’ task performance and perceived workload were collected and compared. Results The proposed neural network model achieved an accuracy of 77.9% in cognitive workload classification. In addition, better task performance and lower perceived workload were observed when participants completed the experimental task under the task condition supplemented with adaptive aiding using the proposed system. Conclusions The proposed MWL monitoring system successfully diminished the perceived workload of participants and increased their task performance under high-stress conditions via interventions by a semi-autonomous suction tool. The preliminary results from the comparative study show the potential impact of automated adaptive aiding systems in enhancing surgical task performance via cognitive workload-triggered interventions in robotic-assisted surgery.

Funder

Nih

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3