Inferring and analyzing module-specific lncRNA–mRNA causal regulatory networks in human cancer

Author:

Zhang JunpengORCID,Le Thuc Duy,Liu Lin,Li Jiuyong

Abstract

Abstract It is known that noncoding RNAs (ncRNAs) cover ∼98% of the transcriptome, but do not encode proteins. Among ncRNAs, long noncoding RNAs (lncRNAs) are a large and diverse class of RNA molecules, and are thought to be a gold mine of potential oncogenes, anti-oncogenes and new biomarkers. Although only a minority of lncRNAs is functionally characterized, it is clear that they are important regulators to modulate gene expression and involve in many biological functions. To reveal the functions and regulatory mechanisms of lncRNAs, it is vital to understand how lncRNAs regulate their target genes for implementing specific biological functions. In this article, we review the computational methods for inferring lncRNA–mRNA interactions and the third-party databases of storing lncRNA–mRNA regulatory relationships. We have found that the existing methods are based on statistical correlations between the gene expression levels of lncRNAs and mRNAs, and may not reveal gene regulatory relationships which are causal relationships. Moreover, these methods do not consider the modularity of lncRNA–mRNA regulatory networks, and thus, the networks identified are not module-specific. To address the above two issues, we propose a novel method, MSLCRN, to infer and analyze module-specific lncRNA–mRNA causal regulatory networks. We have applied it into glioblastoma multiforme, lung squamous cell carcinoma, ovarian cancer and prostate cancer, respectively. The experimental results show that MSLCRN, as an expression-based method, could be a useful complementary method to study lncRNA regulations.

Funder

NHMRC

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference77 articles.

1. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function;Pang;Trends Genet,2006

2. Long noncoding RNAs: past, present, and future;Kung;Genetics,2013

3. Long noncoding RNAs in cancer pathways;Schmitt;Cancer Cell,2016

4. Long noncoding RNA: a crosslink in biological regulatory network;Zhang;Brief Bioinform,2017

5. Posttranscriptional gene regulation by long noncoding RNA;Yoon;J Mol Biol,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3