Integrative, normalization-insusceptible statistical analysis of RNA-Seq data, with improved differential expression and unbiased downstream functional analysis

Author:

Fanidis Dionysios1,Moulos Panagiotis1

Affiliation:

1. BSRC Alexander Fleming

Abstract

Abstract The study of differential gene expression patterns through RNA-Seq comprises a routine task in the daily lives of molecular bioscientists, who produce vast amounts of data requiring proper management and analysis. Despite widespread use, there are still no widely accepted golden standards for the normalization and statistical analysis of RNA-Seq data, and critical biases, such as gene lengths and problems in the detection of certain types of molecules, remain largely unaddressed. Stimulated by these unmet needs and the lack of in-depth research into the potential of combinatorial methods to enhance the analysis of differential gene expression, we had previously introduced the PANDORA P-value combination algorithm while presenting evidence for PANDORA’s superior performance in optimizing the tradeoff between precision and sensitivity. In this article, we present the next generation of the algorithm along with a more in-depth investigation of its capabilities to effectively analyze RNA-Seq data. In particular, we show that PANDORA-reported lists of differentially expressed genes are unaffected by biases introduced by different normalization methods, while, at the same time, they comprise a reliable input option for downstream pathway analysis. Additionally, PANDORA outperforms other methods in detecting differential expression patterns in certain transcript types, including long non-coding RNAs.

Funder

Stavros Niarchos Foundation

Biomedical Sciences Research Center

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3