A model ODE for the exponential asymptotics of nonlinear parasitic capillary ripples

Author:

Shelton Josh1ORCID,Trinh Philippe H1ORCID

Affiliation:

1. Department of Mathematical Sciences, University of Bath , Bath BA2 7AY , UK

Abstract

Abstract In this work, we develop a linear model ordinary differential equation (ODE) to study the parasitic capillary ripples present on steep Stokes waves when a small amount of surface tension is included in the formulation. Our methodology builds upon the exponential asymptotic theory of Shelton & Trinh (J. Fluid Mech., vol. 939, 2022, A17), who demonstrated that these ripples occur beyond-all-orders of a small-surface-tension expansion. Our model equation, a linear ODE forced by solutions of the Stokes wave equation, forms a convenient tool to calculate numerical and asymptotic solutions. We show analytically that the parasitic capillary ripples that emerge in solutions to this linear model have the same asymptotic scaling and functional behaviour as those in the fully nonlinear problem. It is expected that this work will lead to the study of parasitic capillary ripples that occur in more general formulations involving viscosity or time-dependence.

Funder

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3