Reducing the near boundary errors of nonhomogeneous heat equations by boundary consistent methods

Author:

Liu Chein-Shan12,Chang Chih-Wen3

Affiliation:

1. College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 210098, China

2. Center of Excellence for Ocean Engineering, College of Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan

3. Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan

Abstract

Abstract In the paper, we point out a drawback of the Fourier sine series method to represent a given odd function, where the boundary Gibbs phenomena would occur when the boundary values of the function are non-zero. We modify the Fourier sine series method by considering the consistent conditions on the boundaries, which can improve the accuracy near the boundaries. The modifications are extended to the Fourier cosine series and the Fourier series. Then, novel boundary consistent methods are developed to solve the 1D and 2D heat equations. Numerical examples confirm the accuracy of the boundary consistent methods, accounting for the non-zeros of the source terms and considering the consistency of heat equations on the boundaries, which can not only overcome the near boundary errors but also improve the accuracy of solution about four orders in the entire domain, upon comparing to the conventional Fourier sine series method and Duhamel’s principle.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3