Synchrony in networks of Franklin bells

Author:

Şayli Mustafa1,Lai Yi Ming1,Thul Rüdiger1,Coombes Stephen1

Affiliation:

1. Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

Abstract The Franklin bell is an electro-mechanical oscillator that can generate a repeating chime in the presence of an electric field. Benjamin Franklin famously used it as a lightning detector. The chime arises from the impact of a metal ball on a metal bell. Thus, a network of Franklin bells can be regarded as a network of impact oscillators. Although the number of techniques for analysing impacting systems has grown in recent years, this has typically focused on low-dimensional systems and relatively little attention has been paid to networks. Here we redress this balance with a focus on synchronous oscillatory network states. We first study a single Franklin bell, showing how to construct periodic orbits and how to determine their linear stability and bifurcation. To cope with the non-smooth nature of the impacts we use saltation operators to develop the correct Floquet theory. We further introduce a new smoothing technique that circumvents the need for saltation and that recovers the saltation operators in some appropriate limit. We then consider the dynamics of a network of Franklin bells, showing how the master stability function approach can be adapted to treat the linear stability of the synchronous state for arbitrary network topologies. We use this to determine conditions for network induced instabilities. Direct numerical simulations are shown to be in excellent agreement with theoretical results.

Funder

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

Reference64 articles.

1. Application of nonlinear magnetic vibro-impact vibration suppressor and energy harvester;Afsharfard;Mech. Syst. Signal Pr.,2018

2. Synchronization in complex networks;Arenas;Phys. Rep.,2008

3. Phase diagram for the Winfree model of coupled nonlinear oscillators;Ariaratnam;Phys. Rev. Lett.,2001

4. On the theory of an electrostatic pendulum oscillator;Asano;Am. J. Phys.,1975

5. Mathematical frameworks for oscillatory network dynamics in neuroscience;Ashwin;J. Math. Neurosci.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3