Trust your source: quantifying source condition elements for variational regularisation methods

Author:

Benning Martin1,Bubba Tatiana A2,Ratti Luca3,Riccio Danilo4

Affiliation:

1. Department of Computer Science, University College London , London WC1E 6BT , UK

2. Department of Mathematical Sciences, University of Bath , Bath BA2 7AY , UK

3. Department of Mathematics , University of Bologna, Bologna 40126 , Italy

4. School of Mathematical Sciences, Queen Mary University of London , London E1 4NS , UK

Abstract

Abstract Source conditions are a key tool in regularisation theory that are needed to derive error estimates and convergence rates for ill-posed inverse problems. In this paper, we provide a recipe to practically compute source condition elements as the solution of convex minimisation problems that can be solved with first-order algorithms. We demonstrate the validity of our approach by testing it on two inverse problem case studies in machine learning and image processing: sparse coefficient estimation of a polynomial via LASSO regression and recovering an image from a subset of the coefficients of its discrete Fourier transform. We further demonstrate that the proposed approach can easily be modified to solve the machine learning task of identifying the optimal sampling pattern in the Fourier domain for a given image and variational regularisation method, which has applications in the context of sparsity promoting reconstruction from magnetic resonance imaging data.

Funder

Engineering and Physical Sciences Research Council

Alan Turing Institute

Air Force Office of Scientific Research

Fondazione Compagnia di San Paolo

Publisher

Oxford University Press (OUP)

Reference56 articles.

1. Tikhonov, on the stability of inverse problems;Andrey;Dokl. Akad. Nauk SSSR,1943

2. On the convergence of block coordinate descent type methods;Beck;SIAM J. Optim.,2013

3. Solution of incorrectly formulated problems and the regularization method;Benning;Soviet Math.,1963

4. Error estimates for general fidelities;Benning;Electron. Trans. Numer. Anal.,2011

5. Ground states and singular vectors of convex variational regularization methods;Benning;Methods Appl. Anal.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3