Behaviour of solutions to the 1D focusing stochastic L2-critical and supercritical nonlinear Schrödinger equation with space-time white noise

Author:

Millet Annie1,Roudenko Svetlana2,Yang Kai2

Affiliation:

1. Statistique, Analyse et Modélisation Multidisciplinaire (SAMM, EA 4543), Université Paris 1, 90 Rue de Tolbiac, 75013 Paris Cedex, France and Laboratoire de Probabilités, Statistique et Modélisation (LPSM, UMR 8001), Bâtiment Sophie Germain, Université de Paris, France

2. Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA

Abstract

Abstract We study the focusing stochastic nonlinear Schrödinger equation in 1D in the $L^2$-critical and supercritical cases with an additive or multiplicative perturbation driven by space-time white noise. Unlike the deterministic case, the Hamiltonian (or energy) is not conserved in the stochastic setting nor is the mass (or the $L^2$-norm) conserved in the additive case. Therefore, we investigate the time evolution of these quantities. After that, we study the influence of noise on the global behaviour of solutions. In particular, we show that the noise may induce blow up, thus ceasing the global existence of the solution, which otherwise would be global in the deterministic setting. Furthermore, we study the effect of the noise on the blow-up dynamics in both multiplicative and additive noise settings and obtain profiles and rates of the blow-up solutions. Our findings conclude that the blow-up parameters (rate and profile) are insensitive to the type or strength of the noise: if blow up happens, it has the same dynamics as in the deterministic setting; however, there is a (random) shift of the blow-up centre, which can be described as a random variable normally distributed.

Funder

United States National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

Reference44 articles.

1. Propagation of matter-wave solitons in periodic and random nonlinear potentials;Abdullaev;Phys. Rev. E,2005

2. Numerical study of two-dimensional stochastic NLS equations;Barton-Smith;Numer. Methods Partial Differential Equations,2005

3. Finite-time blow-up in the additive supercritical stochastic nonlinear Schrödinger equation: the real noise case;de Bouard,2002

4. On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation;de Bouard;Probab. Theory Related Fields,2002

5. The stochastic nonlinear Schrödinger equation in H$^1$;de Bouard;Stochastic Anal. Appl.,2003

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3