Analysis of point-contact models of the bounce of a hard spinning ball on a compliant frictional surface

Author:

Biber Stanisław W1ORCID,Champneys Alan R1ORCID,Szalai Robert1ORCID

Affiliation:

1. Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building , Bristol BS8 1TW , UK

Abstract

Abstract Inspired by the turf–ball interaction in golf, this paper seeks to understand the bounce of a ball that can be modelled as a rigid sphere and the surface as supplying a viscoelastic contact force in addition to Coulomb friction. A general formulation is proposed that models the finite time interval of bounce from touch-down to lift-off. Key to the analysis is understanding transitions between slip and roll during the bounce. Starting from the rigid-body limit with an energetic or Poisson coefficient of restitution, it is shown that slip reversal during the contact phase cannot be captured in this case, which generalizes to the case of pure normal compliance. Yet, the introduction of linear tangential stiffness and damping does enable slip reversal. This result is extended to general weakly nonlinear normal and tangential compliance. An analysis using the Filippov theory of piecewise-smooth systems leads to an argument in a natural limit that lift-off while rolling is non-generic and that almost all trajectories that lift off do so under slip conditions. Moreover, there is a codimension-one surface in the space of incoming velocity and spin which divides balls that lift off with backspin from those that lift off with topspin. The results are compared with recent experimental measurements on golf ball bounce and the theory is shown to capture the main features of the data.

Funder

EPSRC Doctoral Training Award

University of Bristol and R&A Rules Limited

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3