Affiliation:
1. Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building , Bristol BS8 1TW , UK
Abstract
Abstract
Inspired by the turf–ball interaction in golf, this paper seeks to understand the bounce of a ball that can be modelled as a rigid sphere and the surface as supplying a viscoelastic contact force in addition to Coulomb friction. A general formulation is proposed that models the finite time interval of bounce from touch-down to lift-off. Key to the analysis is understanding transitions between slip and roll during the bounce. Starting from the rigid-body limit with an energetic or Poisson coefficient of restitution, it is shown that slip reversal during the contact phase cannot be captured in this case, which generalizes to the case of pure normal compliance. Yet, the introduction of linear tangential stiffness and damping does enable slip reversal. This result is extended to general weakly nonlinear normal and tangential compliance. An analysis using the Filippov theory of piecewise-smooth systems leads to an argument in a natural limit that lift-off while rolling is non-generic and that almost all trajectories that lift off do so under slip conditions. Moreover, there is a codimension-one surface in the space of incoming velocity and spin which divides balls that lift off with backspin from those that lift off with topspin. The results are compared with recent experimental measurements on golf ball bounce and the theory is shown to capture the main features of the data.
Funder
EPSRC Doctoral Training Award
University of Bristol and R&A Rules Limited
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献