Affiliation:
1. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
Abstract
Abstract
A new approach is proposed for obtaining the dynamic elastic response of a multilayered elastic solid caused by axisymmetric, time-harmonic elastic singularities. The method for obtaining the elastodynamic Green’s functions of the point force, double forces and center of dilatation is presented. For this purpose, the boundary conditions in an infinite solid at the plane passing through the singularity are derived first by using Helmholtz potentials. Then the Green’s function solution for layered solids is obtained by solving a set of simultaneous linear algebraic equations using the boundary conditions for both the singularities and for the layer interfaces. The application of the point force solution for the oscillating normal indentation problem is also given. The solution of the forced normal oscillation is formulated by integrating the point force Green’s function over the contact area with unknown surface traction. The dual integral equations of the unknown surface traction are established by considering the boundary conditions on the contact surface of the multilayered solid, which can be converted into a Fredholm integral equation of the second kind and solved numerically.
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献