The analytic extension of solutions to initial-boundary value problems outside their domain of definition

Author:

Farkas Matthew1,Cisneros Jorge2,Deconinck Bernard1

Affiliation:

1. Department of Applied Mathematics University of Washington Seattle , WA 98195-2420 , USA

2. Department of Biomedical Engineering University of Texas at Austin Austin , TX 78712 , USA

Abstract

AbstractWe examine the analytic extension of solutions of linear, constant-coefficient initial-boundary value problems outside their spatial domain of definition. We use the Unified Transform Method or Method of Fokas, which gives a representation for solutions to half-line and finite-interval initial-boundary value problems as integrals of kernels with explicit spatial and temporal dependence. These solution representations are defined within the spatial domain of the problem. We obtain the extension of these representation formulae via Taylor series outside these spatial domains and find the extension of the initial condition that gives rise to a whole-line initial-value problem solved by the extended solution. In general, the extended initial condition is not differentiable or continuous unless the boundary and initial conditions satisfy compatibility conditions. We analyse dissipative and dispersive problems, and problems with continuous and discrete spatial variables.

Funder

Graduate Opportunities & Minority Achievement Program Fellowship

University of Washington

Ford Foundation Predoctoral Fellowship

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3