Affiliation:
1. Instituto de Ciencias Matemáticas (ICMAT, CSIC-UAM-UC3M-UCM) , C/ Nicolás Cabrera 15, 28049 Madrid , Spain
Abstract
Abstract
We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the solution consisting of a Gamma distribution tail, an intermediate region described by a lognormal distribution and a region of very fast decay of the solutions to zero near the origin. When $s\in \left ( 0,\frac{1}{2}\right ) $, the SS is unbounded at the origin. It also presents three regions: a Gamma distribution tail, an intermediate region of power-like (or Pareto distribution) decay and the region close to the origin where a singularity occurs. Finally, full numerical simulations of Smoluchowski equation serve to verify our theoretical results and show the convergence of solutions to the selfsimilar regime.
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献