BrpNAC895 and BrpABI449 coregulate the transcription of the afflux-type cadmium transporter BrpHMA2 in Brassica parachinensis

Author:

Liu Shuai123,Li Limei45,Deng Yanwu1,Bai Yongsheng1,Sun Chao6,Huang Shili1,Zhou Jiajie1,Shi Liyu1,Yang Xuewei1,Li Ling4,Chen Xuemei7,Tang Yulin1

Affiliation:

1. Shenzhen University Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, , Shenzhen 518060, Guangdong Province, China

2. Shenzhen University Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, , Shenzhen 518060, China

3. Shaanxi Academy of Traditional Chinese Medicine , Xi'an, Shaanxi 710003, China

4. South China Normal University Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, , Guangzhou 510631, China

5. Zhaoqing University Life Sciences College, , Zhaoqing, 526061, China

6. Nanjing Agricultural University College of Horticulture, , No. 1 Weigang, 8210095 Nanjing, China

7. University of California Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, , Riverside, CA 92521, USA

Abstract

Abstract Brassica parachinensis is a popular leafy vegetable. It is able to accumulate high concentrations of cadmium (Cd), but the molecular mechanism of Cd accumulation is unknown. This study investigated the function and regulatory mechanism of the Cd-responsive metal ion transporter gene BrpHMA2. BrpHMA2 was induced by Cd stress and specifically expressed in vascular tissues, and the protein was localized in the plasma membrane. Heterologous expression of BrpHMA2 enhanced Cd accumulation and Cd sensitivity in transgenic Arabidopsis and yeast. After Cd stress, the transcription factors BrpNAC895 and BrpABI449, which may recognize the abscisic acid-responsive elements in the BrpHMA2 promoter, were also differentially expressed. The transcriptional regulation of BrpHMA2 was further investigated using the chromatin immunoprecipitation–quantitative PCR (ChIP–qPCR) assay, the electrophoretic mobility shift assay (EMSA), and luciferase (LUC) reporter activity analysis employing the transient expression system of B. parachinensis protoplasts and tobacco leaves and the Escherichia coli expression system. By binding to the promoter, BrpNAC895 induced the transcription of BrpHMA2. BrpABI449 might bind to the BrpHMA2 promoter or interact with BrpNAC895 to interfere with the action of BrpNAC895. The findings suggest that BrpHMA2 is a membrane-based afflux-type Cd transporter involved in Cd2+ uptake and long-distance transport in plants. BrpNAC895 and BrpABI449, which function as the transcription activator and repressor, respectively, coregulate BrpHMA2 expression.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3