Tomato SlCER1–1 catalyzes the synthesis of wax alkanes, increasing drought tolerance and fruit storability

Author:

Wu Hongqi1,Liu Le1,Chen Yaofeng1,Liu Tianxiang1,Jiang Qinqin1,Wei Zhengyang1,Li Chunlian1,Wang Zhonghua1

Affiliation:

1. Northwest A&F University State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, , Yangling, 712100, China

Abstract

Abstract Very-long-chain (VLC) alkanes are the main wax compounds of tomato fruits and leaves. ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) are the two key genes involved in VLC alkane biosynthesis in Arabidopsis thaliana. However, CER1 and CER3 homologs have not been investigated in tomato, and their exact biological functions remain unknown. We analyzed the wax profiles of tomato leaves and fruits at different growth stages and characterized the tomato CER1 and CER3 homologs. VLC alkanes were the predominant wax compounds in both leaves and fruits at all developmental stages. We identified five CER1 homologs and two CER3 homologs in tomato, which were designated SlCER1–1 to SlCER1–5 and SlCER3–1 and SlCER3–2, respectively. The genes exhibited tissue- and organ-specific expression patterns and were induced by abiotic stresses. SlCER1–1 was localized to the endoplasmic reticulum (ER), which is also the main site of wax biosynthesis. Silencing SlCER1–1 in tomato significantly reduced the amounts of n-alkanes and branched alkanes, whereas its overexpression in Arabidopsis had the opposite effect. Under drought stress, both n-alkanes and branched alkanes increased significantly in wild-type but not SlCER1–1 RNAi tomato plants. Furthermore, SlCER1–1 silencing also increased the cuticular permeability of leaves and fruits. In conclusion, SlCER1–1 is involved in wax alkane biosynthesis in tomato and plays an important role in drought tolerance and fruit storability.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3