Diversity and conservation of plant small secreted proteins associated with arbuscular mycorrhizal symbiosis

Author:

Hu Xiao-Li12,Zhang Jin3,Kaundal Rakesh4,Kataria Raghav4,Labbé Jesse L2,Mitchell Julie C2,Tschaplinski Timothy J25,Tuskan Gerald A25,Cheng Zong-Ming (Max)16,Yang Xiaohan125

Affiliation:

1. University of Tennessee Department of Plant Sciences, , Knoxville, TN 37996, USA

2. Oak Ridge National Laboratory Biosciences Division, , Oak Ridge, TN 37831, USA

3. Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, , Hangzhou, Zhejiang 311300, China

4. Utah State University Department of Plants, Soils and Climate, , Logan, UT 84322, USA

5. Oak Ridge National Laboratory The Center for Bioenergy Innovation, , Oak Ridge, TN 37831, USA

6. Nanjing Agricultural University College of Horticulture, , Nanjing, Jiangsu 210095 China

Abstract

Abstract Arbuscular mycorrhizal symbiosis (AMS) is widespread mutualistic association between plants and fungi, which plays an essential role in nutrient exchange, enhancement in plant stress resistance, development of host, and ecosystem sustainability. Previous studies have shown that plant small secreted proteins (SSPs) are involved in beneficial symbiotic interactions. However, the role of SSPs in the evolution of AMS has not been well studied yet. In this study, we performed computational analysis of SSPs in 60 plant species and identified three AMS-specific ortholog groups containing SSPs only from at least 30% of the AMS species in this study and three AMS-preferential ortholog groups containing SSPs from both AMS and non-AMS species, with AMS species containing significantly more SSPs than non-AMS species. We found that independent lineages of monocot and eudicot plants contained genes in the AMS-specific ortholog groups and had significant expansion in the AMS-preferential ortholog groups. Also, two AMS-preferential ortholog groups showed convergent changes, between monocot and eudicot species, in gene expression in response to arbuscular mycorrhizal fungus Rhizophagus irregularis. Furthermore, conserved cis-elements were identified in the promoter regions of the genes showing convergent gene expression. We found that the SSPs, and their closely related homologs, in each of three AMS-preferential ortholog groups, had some local variations in the protein structural alignment. We also identified genes co-expressed with the Populus trichocarpa SSP genes in the AMS-preferential ortholog groups. This first plant kingdom-wide analysis on SSP provides insights on plant-AMS convergent evolution with specific SSP gene expression and local diversification of protein structures.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3