Time-course analysis and transcriptomic identification of key response strategies of Nelumbo nucifera to complete submergence

Author:

Deng Xianbao12,Yang Dong12,Sun Heng1,Liu Juan1,Song Heyun13,Xiong Yaqian13,Wang Yunmeng13,Ma Junyu13,Zhang Minghua13,Li Jing4,Liu Yanling12,Yang Mei12

Affiliation:

1. Chinese Academy of Sciences Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, , Wuhan 430074, China

2. Chinese Academy of Sciences Center of Economic Botany, Core Botanical Gardens, , Wuhan 430074, China

3. University of Chinese Academy of Sciences , 19A Yuquanlu, Beijing, 100049, China

4. Wuhan University of Technology School of Chemistry, Chemical Engineering and Life Sciences, , Wuhan 430070, China

Abstract

Abstract Water submergence is an environmental stress with detrimental effects on plant growth and survival. As a wetland plant species, lotus (Nelumbo nucifera) is widely cultivated in flood-prone lowlands throughout Asian countries, but little is known about its endurance and acclimation mechanisms to complete submergence. Here, we performed a time-course submergence experiment and an RNA-sequencing transcriptome analysis of the two lotus varieties “Qiuxing” and “China Antique”. Both varieties showed low submergence tolerance, with a median lethal time of approximately 10 days. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) identified a number of key genes putatively involved in lotus submergence responses. Lotus plants under complete submergence developed thinned leaves and elongated petioles containing a high density of aerenchyma. All four lotus submergence-responsive ERF-VII genes and gene sets corresponding to the low oxygen “escape” strategy (LOES) were elevated. In addition, a number of lotus innate immunity genes were rapidly induced by submergence, probably to confer resistance to possible pathogen infections. Our data also reveal the probable involvement of jasmonic acid in the modulation of lotus submergence responses, although to a lesser extent than the gaseous hormone ethylene. These results suggest that lotus plants primarily use the LOES strategy to cope with complex submergence-induced stresses, and they will be valuable for understanding the molecular basis underlying plant submergence acclimation.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3