Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites

Author:

Dong Ding123,Shi Ya-Na4,Mou Zong-Min125,Chen Sui-Yun125,Zhao Da-Ke125

Affiliation:

1. Yunnan University Biocontrol Engineering Research Center of Plant Disease and Pest, , Kunming, 650504, China

2. Yunnan University Biocontrol Engineering Research Center of Crop Disease and Pest, , Kunming, 650504, China

3. Yunnan University School of Life Science, , Kunming, 650204, China

4. Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences , Kunming, 650000, China

5. Yunnan University School of Ecology and Environmental Science, , Kunming, 650504, China

Abstract

Abstract Plant secondary metabolites make a great contribution to the agricultural and pharmaceutical industries. Their accumulation is determined by the integrated transport of target compounds and their biosynthesis-related RNA, protein, or DNA. However, it is hard to track the movement of these biomolecules in vivo. Grafting may be an ideal method to solve this problem. The differences in genetic and metabolic backgrounds between rootstock and scion, coupled with multiple omics approaches and other molecular tools, make it feasible to determine the movement of target compounds, RNAs, proteins, and DNAs. In this review, we will introduce methods of using the grafting technique, together with molecular biological tools, to reveal the differential accumulation mechanism of plant secondary metabolites at different levels. Details of the case of the transport of one diterpene alkaloid, fuziline, will be further illustrated to clarify how the specific accumulation model is shaped with the help of grafting and multiple molecular biological tools.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3