Evolution and functional diversification of R2R3-MYB transcription factors in plants

Author:

Wu Yun12,Wen Jing3,Xia Yiping2,Zhang Liangsheng2,Du Hai3

Affiliation:

1. Zhejiang Sci-Tech University Department of Landscape Architecture, School of Civil Engineering and Architecture, , Hangzhou, 310018, China

2. Zhejiang University Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, , Hangzhou, 310058, China

3. Southwest University College of Agronomy and Biotechnology, , Chongqing, 400716, China

Abstract

Abstract R2R3-MYB genes (R2R3-MYBs) form one of the largest transcription factor gene families in the plant kingdom, with substantial structural and functional diversity. However, the evolutionary processes leading to this amazing functional diversity have not yet been clearly established. Recently developed genomic and classical molecular technologies have provided detailed insights into the evolutionary relationships and functions of plant R2R3-MYBs. Here, we review recent genome-level and functional analyses of plant R2R3-MYBs, with an emphasis on their evolution and functional diversification. In land plants, this gene family underwent a large expansion by whole genome duplications and small-scale duplications. Along with this population explosion, a series of functionally conserved or lineage-specific subfamilies/groups arose with roles in three major plant-specific biological processes: development and cell differentiation, specialized metabolism, and biotic and abiotic stresses. The rapid expansion and functional diversification of plant R2R3-MYBs are highly consistent with the increasing complexity of angiosperms. In particular, recently derived R2R3-MYBs with three highly homologous intron patterns (a, b, and c) are disproportionately related to specialized metabolism and have become the predominant subfamilies in land plant genomes. The evolution of plant R2R3-MYBs is an active area of research, and further studies are expected to improve our understanding of the evolution and functional diversification of this gene family.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3