Multi-variable AUC for sifting complementary features and its biomedical application

Author:

Su Yue1,Du Keyu1,Wang Jun2,Wei Jin-mao1,Liu Jian1

Affiliation:

1. College of Computer Science at Nankai University, China

2. College of Mathematics and Statistics Science at Ludong University, China

Abstract

Abstract Although sifting functional genes has been discussed for years, traditional selection methods tend to be ineffective in capturing potential specific genes. First, typical methods focus on finding features (genes) relevant to class while irrelevant to each other. However, the features that can offer rich discriminative information are more likely to be the complementary ones. Next, almost all existing methods assess feature relations in pairs, yielding an inaccurate local estimation and lacking a global exploration. In this paper, we introduce multi-variable Area Under the receiver operating characteristic Curve (AUC) to globally evaluate the complementarity among features by employing Area Above the receiver operating characteristic Curve (AAC). Due to AAC, the class-relevant information newly provided by a candidate feature and that preserved by the selected features can be achieved beyond pairwise computation. Furthermore, we propose an AAC-based feature selection algorithm, named Multi-variable AUC-based Combined Features Complementarity, to screen discriminative complementary feature combinations. Extensive experiments on public datasets demonstrate the effectiveness of the proposed approach. Besides, we provide a gene set about prostate cancer and discuss its potential biological significance from the machine learning aspect and based on the existing biomedical findings of some individual genes.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference35 articles.

1. Local-nearest-neighbors-based feature weighting for gene selection;An;IEEE/ACM Trans Comput Biol Bioinform,2018

2. Benchmark of filter methods for feature selection in high-dimensional gene expression survival data;Andrea;Brief Bioinform,2021

3. The cancer genome atlas pan-cancer analysis project;Chang;Nat Genet,2013

4. Fast: a roc-based feature selection metric for small samples and imdddata classification problems;Chen,2008

5. Disentangling pten-cooperating tumor suppressor gene networks in cancer;de la Rosa;Mol Cell Oncol,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3