Multimodal data fusion based on IGERNNC algorithm for detecting pathogenic brain regions and genes in Alzheimer’s disease

Author:

Wang Shuaiqun1,Zheng Kai1,Kong Wei1,Huang Ruiwen1,Liu Lulu1,Wen Gen1,Yu Yaling1

Affiliation:

1. School of Information Engineering, Shanghai Maritime University , Shanghai, China

Abstract

Abstract At present, the study on the pathogenesis of Alzheimer’s disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3