R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting

Author:

Shi Hongyan1,Zhang Shengli1ORCID,Li Xinjie1

Affiliation:

1. School of Mathematics and Statistics, Xidian University , Xi’an 710071, P. R. China

Abstract

AbstractRNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3