MODEC: an unsupervised clustering method integrating omics data for identifying cancer subtypes

Author:

Zhang Yanting1,Kiryu Hisanori1

Affiliation:

1. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan

Abstract

Abstract The identification of cancer subtypes can help researchers understand hidden genomic mechanisms, enhance diagnostic accuracy and improve clinical treatments. With the development of high-throughput techniques, researchers can access large amounts of data from multiple sources. Because of the high dimensionality and complexity of multiomics and clinical data, research into the integration of multiomics data is needed, and developing effective tools for such purposes remains a challenge for researchers. In this work, we proposed an entirely unsupervised clustering method without harnessing any prior knowledge (MODEC). We used manifold optimization and deep-learning techniques to integrate multiomics data for the identification of cancer subtypes and the analysis of significant clinical variables. Since there is nonlinearity in the gene-level datasets, we used manifold optimization methodology to extract essential information from the original omics data to obtain a low-dimensional latent subspace. Then, MODEC uses a deep learning-based clustering module to iteratively define cluster centroids and assign cluster labels to each sample by minimizing the Kullback–Leibler divergence loss. MODEC was applied to six public cancer datasets from The Cancer Genome Atlas database and outperformed eight competing methods in terms of the accuracy and reliability of the subtyping results. MODEC was extremely competitive in the identification of survival patterns and significant clinical features, which could help doctors monitor disease progression and provide more suitable treatment strategies.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3