A universal model of RNA.DNA:DNA triplex formation accurately predicts genome-wide RNA–DNA interactions

Author:

Warwick Timothy12,Seredinski Sandra12,Krause Nina M3,Bains Jasleen Kaur3,Althaus Lara14,Oo James A12,Bonetti Alessandro5,Dueck Anne64,Engelhardt Stefan64,Schwalbe Harald3,Leisegang Matthias S12,Schulz Marcel H72,Brandes Ralf P12

Affiliation:

1. Institute for Cardiovascular Physiology, Goethe University , Theodor-Stern-Kai 7, D-60590, Frankfurt am Main , Germany

2. DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main , Frankfurt am Main, Germany

3. Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University , Max-von-Laue-Str. 7, D-60438, Frankfurt am Main , Germany

4. DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance , Munich, Germany

5. Translational Genomics, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca , Pepparedsleden 1, 431 50 Mölndal , Sweden

6. Institute of Pharmacology and Toxicology, Technical University of Munich , Biedersteiner Str. 29, D-80802, Munich , Germany

7. Institute for Cardiovascular Regeneration, Goethe University , Theodor-Stern-Kai 7, D-60590, Frankfurt am Main , Germany

Abstract

Abstract RNA.DNA:DNA triple helix (triplex) formation is a form of RNA–DNA interaction which regulates gene expression but is difficult to study experimentally in vivo. This makes accurate computational prediction of such interactions highly important in the field of RNA research. Current predictive methods use canonical Hoogsteen base pairing rules, which whilst biophysically valid, may not reflect the plastic nature of cell biology. Here, we present the first optimization approach to learn a probabilistic model describing RNA–DNA interactions directly from motifs derived from triplex sequencing data. We find that there are several stable interaction codes, including Hoogsteen base pairing and novel RNA–DNA base pairings, which agree with in vitro measurements. We implemented these findings in TriplexAligner, a program that uses the determined interaction codes to predict triplex binding. TriplexAligner predicts RNA–DNA interactions identified in all-to-all sequencing data more accurately than all previously published tools in human and mouse and also predicts previously studied triplex interactions with known regulatory functions. We further validated a novel triplex interaction using biophysical experiments. Our work is an important step towards better understanding of triplex formation and allows genome-wide analyses of RNA–DNA interactions.

Funder

Goethe University Frankfurt am Main

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference71 articles.

1. RNA-mediated epigenetic regulation of gene expression;Holoch;Nat Rev Genet,2015

2. Long non-coding RNAs: novel regulators of cellular physiology and function;Oo;Pflügers Archiv-European Journal of Physiology,2021

3. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment;Takemata;RNA Biol,2017

4. A scaffold lncRNA shapes the mitosis to meiosis switch;Andric;Nat Commun,2021

5. The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts;Shimada;Genes Dev,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3