Contrastive learning-based computational histopathology predict differential expression of cancer driver genes

Author:

Huang Haojie1,Zhou Gongming1,Liu Xuejun2,Deng Lei1,Wu Chen3,Zhang Dachuan3,Liu Hui2

Affiliation:

1. School of Computer Science and Engineering, Central South University , 410075, Changsha , China

2. School of Computer Science and Technology, Nanjing Tech University , 211816, Nanjing , China

3. The third affiliated hospital of Soochow University , 213100, Changzhou , China

Abstract

Abstract Motivation Digital pathological analysis is run as the main examination used for cancer diagnosis. Recently, deep learning-driven feature extraction from pathology images is able to detect genetic variations and tumor environment, but few studies focus on differential gene expression in tumor cells. Results In this paper, we propose a self-supervised contrastive learning framework, HistCode, to infer differential gene expression from whole slide images (WSIs). We leveraged contrastive learning on large-scale unannotated WSIs to derive slide-level histopathological features in latent space, and then transfer it to tumor diagnosis and prediction of differentially expressed cancer driver genes. Our experiments showed that our method outperformed other state-of-the-art models in tumor diagnosis tasks, and also effectively predicted differential gene expression. Interestingly, we found the genes with higher fold change can be more precisely predicted. To intuitively illustrate the ability to extract informative features from pathological images, we spatially visualized the WSIs colored by the attention scores of image tiles. We found that the tumor and necrosis areas were highly consistent with the annotations of experienced pathologists. Moreover, the spatial heatmap generated by lymphocyte-specific gene expression patterns was also consistent with the manually labeled WSIs.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3